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ABSTRACT 

A method has been developed to investigate the sensitivity of the solutions 

of large sets of coupled, non-linear rate equations to uncertainties in the rate 

coefficients. This method is based on varying all the rate coefficients simul- 

taneously through the introduction of a parameter in such a way that the output 

concentrations become periodic functions of this parameter at any given time t. 

The concentration of the chemical species are then Fourier analysed at time t. 

We show via an application of Weyl's ergonc theorem that a subset of the Fourier 
/öcA 

coefficients is related to (r-r—), the rate of chang.' of the concentration of 

species i with respect to the rate constant for reaction i  averaged over the 

uncertainties of all tne other rate coefficients. Thus a large Fourier coeffi- 

cient corresponds to a large sensitivity, a small Fourier coefficient corresponds 

to a small sensitivity. The amount of numerical integration required to calcu- 

late these Fourier coefficients is considerably less than that required in test; 

of sensitivity where one varies one rate coefficient at a time, whii9 holding 

all otners fixed. The Fourier method developed in this paper is not limited 

to chemical rate equation, but can be applied to the study of the sensitivity 

of any large system of coupled, non-linear differential equations with respect 

to the uncertainties in the modeling parameters. 
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I.     Introduction 

Sets of coupled,  non-linear rate equations arise in a number of disciplines. 

A classic example is  that of cliemical  rate equations.    In the study of combustion, 

air-pollution,  upper atmosphere phenomena and chemical  lasers as many as  100 

coupled rate equations  involving some 50 separate species may be needed to 

account for the properties of such systems.    One is  thtn faced with the problem 

of solving a  large set of coupled, non-linear differential  equations of the form 

dc' 
3t r cifk (i.i) 

when c is a vector of concentrations, {k} a set of rate coefficients and f some 

complicated function of the concentrations. While one may prove existence and 

stability theorems for the equilibrium point^ , tne only way to solve these 

equations, i.e. to obtain all the species concentrations as functions of time, 

is through the use of a high-speed computer. 

Unfortunately, the rate coefficients (or cross sections) for many reactions 

are not known with high accuracy and indeed may be uncertain by one or more 

orders o*" magnitude. This gives rise to the very important problem of 

"sensitivity" which may be defined as the effect of uncertainties in the rate 

coefficients on tne calculated concentrations of all the various intermediate 

and produ:t species. The uncertainty in the rate coefficients of certain 

"important" reactions in the reaction scheme may have a significant effect on 

the output function (for instance, concentration at time t), wnile uncertainties 

of the same magnitude in rate coefficients of "unimportant" reaction in the 

reaction scneme may hardly effect the output function. The reliability o" the 

^ 



 ■" MmHtmim**   '"   ■   '•'~*'^m^m^Bi*mm^^mmr^^mm*mm*im •'      '< •'••! 

output numbers clearly cannot be established without knowledge of the sensitivity 

of the output data  to the uncertainty in the input parameters. 

The problem is  to  find a practical  method of determining  the effects of 

the uncertainties   in  the rate coefficients on the solutions of the rate equations, 

Since we are interested  in  the situation where the uncertainties  in tue rate 

coefficient may be orders of magnitude,  linearization schemes are not appropriate. 

A "brute force" method of investigating  the sensitivity is net feasible as can 

readily be seen from the following example.    Suppose we have a reaction scheme 

which has n coupled  reactions involving m different chemical  species.    Let us 

furthermore assume that we wish to calculate the concentrations of the m species 

at some time t for z different values each of the 2n rate coefficients.     If we 

now change one rate coefficient at a time while holding all  the others fixed, 

we would fave to carry out z      integrations of the rate equation  (1.1)  to time t. 

For the m different species,  this procedure will   give rise to a pr,nt-out of 

ni(z)      concentrations.     If we know to a good accuracy the equilibrium constants 

for all   the reactions  and apply the principle of detailed balance,  the number 

of independent rate coefficients will  be reduced to n and we would have to carry 

out z    integrations  up to time t for each species m.     In either case,  for n 

large,   it is obvious  that the time and expense involved in such an analysis of 

sensitivity is prohibitive and the print-outs so numerous as to defy a simple 

analysis of the results.    Clearly, one needs  to dtvise some more powerful 

method for the study of sensitivity. 

Our approach to this problem is to ask for a less detailed description of 

the effect of rate coefficient uncertainty on the output function at any given 

time.    We vary all   the rate coefficients  simultaneously so as to explore the 

■3- 
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entire space of uncertainties ir the rate coefficient set {k}.    As will  be seen 

below,  this turns out to be equivalent to varying a sinqle rate coefficient and 

then averaging the attendant concentration changes over the uncertainties of all 

the other rate coefficients, wnere we express  this uncertainty in terms of a 

probability distribution.    Our approach is thus  related to a "mean field"  theory 

where we represent  the  fluctuations of  the  field  by the uncertainties  in the 

(n-1)  rate coefficients over which we average. 

To carry out this  program, we relate cacn rate coefficient k.  to a  frequency 

a. and introduce a parameter s which simultaneously varies all   the rate coef- 

ficients  in such a way that the concentrations at a fixed time become periodic 

functions of s.     The concentrations  can  then be Fourier analyzed.    Wo then show 

that a certain subset of tfiese Fourier coefficients can be related to  the first 

partial  derivative of tne concentration c  of species  i with respect to a rate 

coefficient k,  averaged over the uncertainties of all   the other rate coefficients. 

A large value of the Fourier coefficient A "'   tnen shows "»« (5) is large. 

i.e. the effect of J change in the I'th rate coefficient on the concentration 

of species i is significant. Conversely, a small Fourier coefficient A 
ac1 \ J 

indicates  that/^r—)   is  small,  i.e.   the effect of  the variations of  .he j'th 

rate coefficient on the concentration of species  i   is small.    In order to calcu- 

late these Fourier coefficients, we must  integrate  the rate equations  numerically 

up to the desired  time  for each value of the parameter s.    Tiie number of s values 

which we include in our parameter set determines the accuracy to which we can 

calculate the Fourier coefficient;   the larger the set of s values,  the more 

accurate  the determination of the Fourier coefficients. 

Since we must still   perform numerical   integrations of the rate equations 

-4- 
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(1.1), the question arises wny this methcd is 10 be preferred to the more 

direct method of varying each rate coefficient separately while Keeping all 

others fixed. As will be shown in paper II, which deals primarily with the 

computer calculations, the number of integrations required by the Fourier 

method is 0(n ) where r is a small integer (r<10) which depends upon the choice 

of tne frequencies «^ i ■ l,2,...,n. It can readily be verified tiiat for n, 

z large, n <(z) . The computational economy of this method of analysis thus 

becomes more pronounced as n, the number of reactions, increases. The reason 

for this reduction in the number of required integrations up to time t is to 

be found in the fact that in the Fourier method we sample the c(k) space at 

a set )f points determined by the values of the set {$} and the vector u, 

whereas the "b-ute force" method involves neither sampling nor the simultaneous 

variation of the set of rate coefficients iki and thus requires many 

more integrations of the rate equations. As will be clear from the body of 

the paper, this sampling in a certain sense corresponds to the averaging over 

all the rate coefficients. The reduction in the number of required integrations 

is thus intimately related to the use of a "mean field" theory. 

Our results are presented in two papers, I and II. In paper I, we present 

the theoretical basis of our method without explicit reference to the verifying 

computer experiments. In paper II, we present tne results of our computer 

calculations as well as a detailed discussion of the problems involved in such 

calculations. 

It should be pointed out that the utility of this Foirier analysis method 

of testing sensitivity extends beyond the confines of chemical kinetics and 

beyond the confines of differential equations. Large sets of coupled, non- 

linear equations are used in many fields such as economics, population dynamics, 

weather fore-asting, systems analysis, operations research, etc. for modeling 

- 5 - 
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and predictive purposes. As has been pointed out by a number of investigators, 

it is important that sensitivity tests be carried out on such systems to 

identify the critical parameters and to validate the applicability of the 

models. The method developed here can be applied to any set of equations, 

differential, integral, algebraic, etc., which yield an output as Q complex 

fi.notion of many parameters. In fact, we have used an analytic function of 

several variables to test some of our ideas. Vie plan to apply this Fourier 

method to the analysis of other complex systems in the near future. 

-6- 
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11. Fourier Analysis 

The rate equation for coupled chemical reactions which obey the law of 

mass action can be written in the form 

r=l r'1 L r it«! 

dc 

ar c r,i  - k 

Ml      il 

(2.1) 

(i = l m) 

whe re c ^(k,,.. .j< ;t) is the concentration of species i at time t, 
r,i 

V   • - V r.i  r.i 

is the stoichiometric coefficiont of the species  1   in reactionr, with r=l,...,n 

labeling the different reactions in the reaction system, and where k (k    )  is 
r    -r 

the forward (backward) rate coefficient for reaction r. The coefficients u 
r.i 

and vr ^  are non-negative  integers so tnat the stoichiometric coefficient 

v   .  defined above can be positive,  negative or zero.     From the form of the rate 

equations  (2.1) one can prove that the concentrations are bounded and non-negative, 

that they are continuous  functions of the time and the rate coefficients and 

that an equilibrium point exists.    ' 

In order to determine  the effects of uncertainties  in the rate coefficients 

k     on the concentrations c.  at time t a systematic method for varying the k's 

must be developed.    We define 

(1-1 n) (2.2) k(0Lui K-j    e 1 

and 

Uj = f^sin u-s) 

,(o). 

(2.3) 

where ki 'Is the "best value" of the rate coefficient (i.e. the one which the 

investigator believes to be the best available value based on experiments or 

calculations), the "frequency" u.  is a positive integer,   s is a parameter and f. 

7- 
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is a functior, to be detennined. The introduction of the parameter u. and the 

form of Eq. (2,2) permits one to effect readily order of magnitude chanyes in 

the rate coefficients. The form of equation (2.3) permits one to vary simul- 

taneously all the rate coefficients by varying tne parameter s. The rapidity 

of the variation is determined for each k. by the magnitude of the UJ.'S. The 

to • are chosen to be positive integers in order that the concentrations at a 

fixed time t become periodic functions of s with period 2n: 

c^s-.t) '-  c^s ♦ Znjt) (2.4) 

In the development to follow we suppress this dependence of the concentrations 

on timp, it bei ig understood that the analysis is carried out for a fixed time t. 

The concentration as a function of s describes a closed path. That is, 

for eacn 1 and for every value of s we ootair, a point in fc space with value 

C|00i as s changes by Z--.  we return to the same values of f; and u, [see  eqs. 

(2,2) and (2.3)], and, from equation (2.4), to the same value c.(s). Since 

c.(s) is periodic on 2v  w«_ may expand it in a Fourier series 

A(i)  ^ ^      . 

■|—♦ £ (A^ sin r$ ♦ 8^ cos rs)  , (2,5) c^s) - 

In the analysis presented below we are interested only in the Fourier sine 

coefficients A that correspond to the original input frequencies ^.,  i.e. the 

coefficients given by 

■C- 
(i) = - r c-(s)sin ^s ds 

(2,6) 

I = 1,2,...,n 

(i) We now wish to relate tne Fourier coefficients l\        to the effect of the 

-8- 
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variation of tue rate coefficients kr and the concentrations c^ In order to 

do this it is necessary to relate the s- space integral of Eq. (2.6) to a n- 

dir.iensional integral over the entire ü space. It can be shown that if the 

entire u space is covered densely as s is varied, then the integrals over tne 

s- space and the u space yield identical results. ThtS is just a statement 

of the 3rgodic tneorcm which permits one to equate time and phase space averages 

to in statistical mechanics/ ' If the frequencies u-   in Eq. (2.3) were chosen 

be incommensurate, then the function c,($) i.e. the concentration as a function 

of the paramecer s, would be an almost periodic function. This implies that 

the path in the space Rn{ä),  where the Q's are defined by 

0. ■ u).s   (mod 2") (2.7) 

returns arbitrarily close to any initial   point as I—♦•.    One could then equate 

the s- space integral  with the integral  over the n- dimensional  9 space as was 

first proved by Meyl.    '    However,  the use of an incommensurate set of frequencies 

oj.  in Eq.   (2.3) would require that the numerical  evaluation of the Fourier 

coefficients A     of Eq.   (2.6) be carried out over an infinite period.    This 

clearly is not a feasible procedure on any known computer. 

It is for this  reason tnat we introduce integei   frequencies u^  in Eq.   (2.3). 

Their use leads to a finite period (0 to 2-) analysis which can readily be 

handled on a computer.    Tnis will  give rise to an error in the analysis since 

now the "phase point" will   no longer densely cover the u space as s is 'aried 

and the s-space and u space   integrals therefore do not yield identical   results. 

Let us  for tne moment ignore this error and use u'eyl's  theorem for our 

periodic function c(s).    We write 

AD 
^io i irv ,(«,.....»„) sinQ, 

-9- 
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This expression can be put  in a mere suggestive fon as fo'ilows. 

integral   is rewritten by integration by parts as 

.2n 

The t'th 

f2v 1      fZt 
- dQ^   c(ör...On^   sinO^  -    Tn 

Jo Jo 
^ %cos e. 

(2.9) 

where the boundary term has vanished by the periodicity of the integrand. The 

use of tq.(2.9)then permits us to rewrite Eq.(2.8) as 

•2t       r2-i  .. dc. 
XD  .     2 C*     rct n 

d9j w:cos ei 
(2.10) 

"I (2n)' 

Tne 6 space integral  must now bt related to the u space integral.    The transfor- 

mation  is  (see Eqs.   (2.3N  and  (2.7)) 

MAsin e.) 
du-   m —i 1 J—    cos  Q.  dy. UUJ Ö sin 0. j      j 

(2.11) 

whe re we require that f.  be a monotonic function of its argument.    Then 

•fl( + 1)        ffn(+1)     ft  dujCOse 

•'"■!=      -I    - 
be. 

i  Du, 

71   f^-l)     fn(-l) 
of,(sin y.) 

(2.12) 

0 cos 9J TWöT 
Si 

{\) In order to obtain a definite relation between Av   '  and ac-/du, we must choose 

some particular form for tne function Msln Bj.    There are several  choices which 

lead to useful  expressions  for the A(^; as will   be seen below, a particularly 

advantageous choice is to set 

dfJ(Si" V 2Ü        1 
-■      .    M —   cos 0.  ■ r— i 3 sin y. j      a^ 

where a- is a parameter. The use of Eq. (2.13) in Eq. (2.12) leads to 

(2.13) 

-10- 
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(2.14) 

Integration of Eq.   (2.13) yields 

] fi   + sin 0.' 

and also indicates the range of integration in Eq. (2.14). 

as a function of Uj from Eq. (2.15) gives for Eq. (2.14) 

)'**>  /•+u n      a     ac 

.  ... L-LI^^v^   • 

(2.15) 

Expressing cos 0. 

(2.16) 

Since 

.+ca     ^+i» n 

j Tr*!j cosh a.u. 
J  J 

(2.17) 

we obtain as our final result 

A(i) - f- (dCj/au.) 

where the bracket in Eq. (2.18) is defined by 
.-too   n 

<Y(u1 u^l) 

-co ^.-hi.   ■ 

TT p(ui; a ) Hu],...iun)  dui 
«Leo     «LUD   -j = I      J     J 

...    TT p(u i a ) du 

and 

P(uj:aj) = ish tjUj- 

(2.18) 

(2.19) 

(2.20) 

The function p(u.;a.) can be interpreted as a distribution function in u space 
O J 

which weights the uncertainty in the rate coefficients. Equation (2.18) is the 

-11 
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desired relation between the Fourier coefficient A'1' and the change in the 

concentration of species i with a change in the i'th  rate coefficient, dc/öu , 

averaged over the changes of all tl-e other rate coefficients. 

The particular form of f. (sin 9.) that we have chosen, Eq. (2.15), has 

lead to a weight function p(u.;a.) for each rate coefficient, Eq. (2.20), which 

has several convenient properties. As a function of u., the function p(u.;a.) 
J J   J 

is symmetrically bell shaped about y.«0 corresponding to k.-k(0^, the "best" 
J J J 

value of the rate coefficient k.. As a., which is a parameter at our disposal, 
J J 

is increased, the weight function p(u.;a.) narrows about u.=0; this corresponds 
J   J J 

to a decreased spread in the values of the rate constant k., i.e. it corresponds 

to a narrower range of the uncertainty of k. around k{0K     In the limit as a—»-, 
J      J j 

one obtains 

lim  POJJ^) ■ n6(uj) (2.21) 

'j 

where 6(x) is the delta function of argument x which implies that the rate con- 

stant is known with certainty to be ky'.    When some information is available 

on the spread and distribution about the value of the rate coefficient k. about 

its "best" value V.0',  one can determine the a, through the standard deviation 
J J 

of the values in u space 

9   ,  /*" u. 4. du.    2  , 
(u2> - i /  J-J L =5 L (7 99s v r  t J   ccsh a.u.  4^  2 (2-22) 

"<10      J J     a. 

from which it follows that 

.   TT        1 
aj  " 2    7T71/2 ' (2.23) 

j 

•12- 
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The parameter a^ thus permits us to introduce explicitly the spread of uncertain- 

ties in the values of the rate coefficients into our analysis. 

To calculate the Fourier coefficients A*1' we must first choose a suitable 

set of ^'s and a^s. What constitutes a "suitable" set ofw'l will be discussed 

in the next section in conjunction with the error analysis and in more detail 

in paper II. The set of Wj's defines the u.'s  as a function of s according to 

Eqs. (2.3), (2.7) and (2.15). For each value of s one obtains a value of the 

concentration ^(^,...,1^). In principle one can then compute the fS^  to any 
Q 

desired accuracy by taking enough values of s, 

2TTII 

m . q ■ 1.2 m. (2.24) 

where m is some integer. 

It is important to point out that our main interest is in identifying those 

rate coefficients whose variation significantly effects the concentration c 

of a species i at time t, and those rate coefficients whose variation has only 

a minimal effect en the species concentration c. Thus if one of the Fourier 

coefficients, say A* ■ is one or more orders of magnitude larger than all 

other coefficients A^l). | - 1,2,....n, U/j), than the variation of the j'th 
4 

rate coefficient k.,  clearly nas a larger effect on the concentration c.(t) 

than the variation of the other rate coefficients. If on the other hand all 

the coefficients A^, I ■ l,2,...,n, are of the same order or magnitude, 
C 

then the concentration of species i at time t, c.(t), is effected essentially 

equally by the variation of any of the rate coefficients k . 

One problem with the above analysis must be pointed out. The Fourier 

coefficient A(1' of Eq. (2.18) may be small either because öc/öu is small over 
?. 1  * 

■13- 
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the whole range of integration of Eq. (2.19). which is the case discussed above, 

or because öc/du, charges sign one or more times in the range of integration. 

Thus, a small value of ä'1' does not necessarily imply that the concentration c. 

is insensitive to changes in the rate coefficients. The remedy for this dmi- 

culty would be to find a relation between the Fourier coefficients, or a. combination 

of Fourier coefficients, and an everywhere positive (or everywhere negative) 

function of the rate of change of the concentrations with rate coefficients, such 

as for instance <(öc./öuj2>. We have, however, not been aMe to establish 

such a relationship and it seems doubtful that a simple relationship of this form 

exists. In carrying out computer calculations it should, however, not be too 

difficult to verify whether tcj&g  at any given time t is monotone or not in 

the range of integration over the u space. 

Thus while one can assert that a large V1' implies nigh sensitivity of the 

concentration of species i with respect to chaiges in the rate coefficient klf 

the converse statement does not necessarily folloy^ without checking on the mono- 

tonicity of öc/bu as discussed above. 
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III. Choice of the Frequencies w^ 

As we have mentioned aoove, the appl Kation of Weyl's theorem in going fron, s 

space. Eq. 12.6), to tne u space, Eq. (2.16), via the 0 space, Eq. (2.8), must lead to 

an error in the analysis sirce we ust con.nensurate (integer) frequencies. This 

error can be minimized by a judicious cnoice of the integer frequencies ^ and 

the nunber and magnitude of the m values of the parameter s given by Eq. (2.24). 

We limit ourselves here to some qualitative remarks whicn will, however, clearly 

indicate the nature of tne problem. 

The integer frequencies ^ lead, according to Eqs. (2.7) and (2.24), to a 

covering of the n dimensional 6 space by an array of points as q takes on its 

integer values ,-1.2...#. Clearly one obta.ns a better coverage of tne Ö space 

and thus reduces the error in applying Weyl's tneorem if one can increase the 

density of points in the n-dimensional nypercuDe and if one can distribute the 

points uniformly within the space. Since 2 and q are both integer, the points 

i.s (mod 2.) will form a regular lattice in Ö space. Our objective will be to 

.nake this point lattice, wnica is completely generate, oy a unit cell, as uniform 

as possible in all n di.ections by a judiuous choice of the .'s. As our measure 

of uniformity we take ^rcufaic unit cell ■ -UhOUt further information about 

tne behavior of the output function this seems the most reasonable choice. 

For a fixed number m of s points, cnosen for computational convenience, 

we will try to find a vector 2 (of tne infinite set of S's) which gives rise 

to a nypercubic unit cell. Once having done this we can assert, without loss 

of generality, that ^ lies along one edge of this hypercubic unit cell whose 

length  is 
2-P   _    There are now two ways  to compute  tne volume V of the 

■15- 



ynlt cell. In the n dimensional Ö space, ii follows from the above corsrrüctlon 

that 

thSL] 
I 

(3.1). 

3'-:t we also know that the total   volume of the n-dimensional   0 space  is  {?.) 

Since  there are m unit cells  in that space,  it follows that 

V    I (20" m        ' 
(3.2) 

Equating (3.1) and (3.2) then yields 

m (3.3) 

-,.,   the  rtlatlon between the wlnliaum length of tne vecto •  J,  the dimension n 

and tne number Of s points,    m,    for a point lattice composed of hypercubic 

urn t. ^el 1 s. 

Fh« condition expressed in equation (3.3) yields important insight into 

the judicious Choice of the frequencies ...    For systems with large dimensions. 

I.e. B large number n of rate coefficients (or coupling parameters in general). 

\Z\   approacties m. Thus, the cnoice of the number m of s points for the numerical 

computation determines the value of u and thus guides one in the choice of 

the w's. ^ince one would expect the error in the analysis due to the use of 

integer frequencies u.   to be of order 1/m, i.e. inversely proportional tc tne number 

of unit cells, it is evident that one should cnoose a large value of m to carr> 

out the calculations. Tnis in turn implies from Eq. (3.3) a large |u|. 

The analysis leading to Eq. (3.3) is based on the construction of unit 

cells Which are exact hypercubes. Since |u|, m and n are all integers it may 

-16- 
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not be possible to fulfill condition (3.3) exactly for all (arbitrary) choices 

of m and n. It is easy to show this. Let us, Tor instance, square both sides 

of Eq, (3.3) and let n = 5. We are then required to find an integer m such that 

we can express a im  of n squares,  |iü| . as i  . Clearly, this is possible, 

if at all^only for certain special values of m. To be more realistic, we should 

weaken our criteria for uniformity of trie point lattice by stipulating unit 

cells which are as close as possible to hypercubic and then rewrite Eq. (3.3) as 

Uli (3.4) 

For n » 1, ^or which both (3.3) and (3.4) reduce to \Z\   ■ m, it should be 

possible to obtain a more nearly exact hypercubic unit cell. 

The question as to the "optimum" choice of the u'i has been considered by 

a number of authors, using a different approach from tnat presented above, in 

connection with the general problem of the approximate evaluation of multi- 

dimensional integrals via discrete summations' ^. Korobov's book has tables 

of Wi's for a given number of points m (for m prime) and dimension n up to 

n = 10  These tables ure reprinted in the book by A. H. Stroud. It is inter- 

esting and comforting to note that although these tables were computed from 

completely different criteria than those employed by us, the Korobov ^'s indeed 

generate hypercubic unit cells to a very good approximation for all his sets of u 

for which we have carried out the appropriate calculations. 

Korobov's analysis of the error in the use of integer frequencies yields 

explicit prescriptions for calculating the "optimum" set of ai.'s as given in his 

tables. Our approacn presented above does not yield sucn an explicit aljorithm. 

We plan to develop such an algorithm and then compare our sets of u with those 

of Korobov in a subsequent publication. 
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frequency 

As stated above, if one wishes to decrease the error in the integer A analysis. 

one should use a large number   m of s points and thus a large pi- It can 

readily be verified from Eq. (2.6) that for large .. one needs to evaluate 

C(s) for a larger number of I values in order to obtain an accurate value for 

the Fourier coefficient *(1). This requires more extensive computer calculations. 
»I 

A reasonable compromise between these two effects needs to be adopted. 

The transformation from u  space to 8 space as given by Eqs. (2.3) and (2.7) 

will also effect the error term since the specific transformation whicn is chosen 

determines the rate of change of the function c(s) as a function of s. We are 

faced nere with an interesting problem in compensating effects. Either the 

transformation u1 - u.{d)   Is singular or the weight function p^-.a^ is singu- 

lar at one or more values of u..    For tnt chosen transform it is readily veri- 

fied from Eqs. (2.15) and (2.20) that ui diverges at 9 - n/2 and 0 - 3n/2, but 

at these points pCtl^) - 0. This same effect will be found fop aoy transfor- 

mation and its associated weigi.t function. Tnus in tne regions of "6 space 

where the transformation is divergent the associated weigiit function will 

always compensate. We are therefore led to expect that the choice of the 

transformation function will not significantly effect the final numerical results. 

This is born out by the data presented in paper II, 
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